Micro Embedded generation

Application for new connection and supply of an embedded generator (incl. solar, wind & micro-hydro)

Please print and complete relevant sections of this form and return to:

Post: TasNetworks Pty Ltd
Customer Supply Team
PO Box 419
Launceston Tas 7250

Phone: 1300 137 008
Fax:(03)63247528
Email: newsupply.applications@tasnetworks.com.au

Declaration

By completing this form you are agreeing to the details enclosed and accept liability for any costs incurred on this account. You are also agreeing to the terms and conditions of two TasNetworks contracts.

1. Connection services – terms and conditions governing the connection of your embedded generator to TasNetworks’ distribution network, and

2. Supply services – terms and conditions suitable for embedded generation.

Part 1 – Residential Customer details

<table>
<thead>
<tr>
<th>Title</th>
<th>Customer’s full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street address</td>
<td></td>
</tr>
<tr>
<td>Suburb</td>
<td>Postcode</td>
</tr>
<tr>
<td>Postal address (if different)</td>
<td></td>
</tr>
<tr>
<td>Suburb</td>
<td>Postcode</td>
</tr>
<tr>
<td>Contact phone</td>
<td>Mobile</td>
</tr>
<tr>
<td>Contact email</td>
<td></td>
</tr>
</tbody>
</table>

Business Customer details

<table>
<thead>
<tr>
<th>Business name</th>
<th>ABN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact name</td>
<td></td>
</tr>
<tr>
<td>Street address</td>
<td></td>
</tr>
<tr>
<td>Suburb</td>
<td>Postcode</td>
</tr>
<tr>
<td>Postal address (if different)</td>
<td></td>
</tr>
<tr>
<td>Suburb</td>
<td>Postcode</td>
</tr>
<tr>
<td>Contact phone</td>
<td>Mobile</td>
</tr>
<tr>
<td>Contact email</td>
<td></td>
</tr>
</tbody>
</table>
Part 2 – Location of connection

Street address

Suburb

Postcode

National Meter Identifier (NMI) if known

Type of premises: Domestic/Residential

Commercial/Business

Industrial

Rural production

Council

Other

Retailer

Part 3 – Connection details

Connection type

Embedded generation

Wind

Hydro

Solar

Other

B6 Modify existing connection –

micro embedded generation single phase

New connection with B6

B6 upgrade

Date of upgrade

B7 modify existing connection –

micro embedded generation multi-phase

New connection with B7

B7 upgrade

Date of upgrade

Part 4 – Description of connection request and generator operation

(ie designed to reduce/offset customer consumption or dedicated generation connection).

Estimated commissioning date(s)

Other information such as amount and timing of power required during construction or any auxiliary power requirements

Part 5 – Detailed site information - new electricity connections

Distance from TasNetworks’ existing electricity supply to proposed connection

metres. Pole Identification No.

How much of this distance is on:

Your Property

Metres

Public Road

Metres

Neighbours Property

Metres

Underground

Metres

Overheard

Metres

Description of likely route of line and possible obstructions

No trees

Some trees

Heavily treed

Flat

Undulating

Hilly

Water

Rock

Railway

Highway

Buildings

Transmission Tower/Line

If new line is to cross a neighbour’s property, are they likely to grant an easement?

Yes

No

If no please provide other details

Diagram attached

Yes

No

Have you discussed the easement with your neighbour?

Yes

No

Proposed maximum demand

amps
Part 5b – Detailed site information – existing electricity connections

My existing electricity connection is:

<table>
<thead>
<tr>
<th>Underground</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of your underground mains</td>
<td>Pole Identification No.</td>
</tr>
<tr>
<td>Private mains size</td>
<td>Length of your overhead service wire</td>
</tr>
</tbody>
</table>

Existing maximum demand: ___________ amps

Part 6 – Generator Details

Generator type: Photovoltaic (solar)

<table>
<thead>
<tr>
<th>Number of modules</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

Rated output (watts per module): ___________

<table>
<thead>
<tr>
<th>Number of inverters</th>
<th>Inverter Manufacturer</th>
</tr>
</thead>
</table>

Inverter model no: ___________

Inverter rating: ___________ kW

Inverter rating: ___________ kVA

Does the inverter operate at REACTIVE power factor 0.9 LAGGING OR UNDER-EXCITED? Yes [] No []

<table>
<thead>
<tr>
<th>Inverter phase/s</th>
<th>Single phase</th>
<th>3 phase</th>
</tr>
</thead>
</table>

All embedded generators:

- 10kW and over connecting to LV supply must use a 3 phase inverter
- Under high risk of generating over-voltages (as advised by TasNetworks) should connect to the LV supply using a 3 phase connection

<table>
<thead>
<tr>
<th>Wind Turbine</th>
<th>Gas Turbine</th>
<th>Diesel</th>
<th>Water turbine</th>
</tr>
</thead>
</table>

Other (please describe): ___________

<table>
<thead>
<tr>
<th>Number of modules</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

Rated output (watts per module): ___________

Connection and protective equipment incorporated: yes [] No []

<table>
<thead>
<tr>
<th>Inverter Manufacturer</th>
</tr>
</thead>
</table>

Inverter model no: ___________

Inverter rating: ___________ kW

Inverter phase/s: Single phase [] 3 phase []

Inverter rating: ___________ kVA

<table>
<thead>
<tr>
<th>Number of inverters</th>
</tr>
</thead>
</table>

Provide generator machine type details i.e. induction, synchronous, etc.

Preferred site location, listing any alternatives in order of preference

Maximum power generation and / or demand of whole plant

Maximum kW and / or kVA, or average over 15 minutes or similar

Expected energy production or consumption in kWh per month

Nature of any disturbing load – size of disturbing component kW/kVAR

Nature of power electronic plant which may produce harmonic distortion

All embedded generators:

- 10kW and over connecting to LV supply must use a 3 phase inverter

- Under high risk of generating over-voltages (as advised by TasNetworks) should connect to the LV supply using a 3 phase connection

Part 6b – Energy Storage (battery) Details

Will the embedded generation system incorporate battery storage?
Yes ☐ No ☐

If Yes, please provide the following details:

Battery manufacturer:

Battery nameplate rating information:

Total energy storage output: kWh or Ah

Will you have communications installed Yes ☐ No ☐

Other (please describe)

Please provide a single line diagram of the proposed embedded generation and battery installation.

Part 7 – Connection equipment

The generator system owner/s shall install all equipment in accordance with all relevant Australian standards and as outlined in the system details. All equipment shall be operated in a safe and reliable manner.

The generator system owner/s shall inform TasNetworks about any changes in the system details provided in the application.

Each party shall be responsible for the operation and maintenance of the equipment owned by it and must maintain such equipment in accordance with good electricity industry practice (as defined in the Tasmanian Electricity Code and Australian Standards).

The parties shall comply with all instructions, directions or powers of the System Controller (as defined in the Tasmanian Electricity Code) in relation to all connection equipment.

Part 8 – Electrical contractor details

Contact name of electrical contractor (if applicable)

Business name of contractor

ABN

Postal address

Suburb

Postcode

Contact phone

Mobile

Contact email
Installer Details

Contact name of solar installer
Business name of installer
Postal address
Suburb
Contact phone
Contact email

Part 9 – Customer signature or agent authority

Customer/Signature
Date
Applicant Signature (other than customer)
Date

Full name and title

Additional Information:

Attachment – single line diagram of generator system

Example single line diagram: single phase 5kW solar PV array SLD

PV array – 8 series modules per string
DC cables – size: 6.00mm2 Cu. Total length: 20m
AC cables – size 10.0mm2 Cu. Total length: 10m
Customer
TasNetworks
DC junction
Inverter 5kW
AC disconnect
Customer MSB
Service fuse